初三上册数学教学计划

时间:2024-10-22 13:27:30
初三上册数学教学计划

初三上册数学教学计划

时间过得太快,让人猝不及防,我们的工作又迈入新的阶段,立即行动起来写一份计划吧。相信许多人会觉得计划很难写?以下是小编整理的初三上册数学教学计划,欢迎阅读,希望大家能够喜欢。

初三上册数学教学计划1

一、教学理念

数学教学应从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流,获得知识,形成技能,发展思维,学会学习,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。

在教学活动中,教师应发扬教学民主,成为学生数学活动的组织者、引导者、合作者;要善于激发学生的学习潜能,鼓励学生大胆创新与实践;要创造性地使用教材,积极开发、利用各种教学资源,为学生提供丰富多彩的学习素材;要关注学生的个体差异,有效地实施有差异的教学,使每个学生都得到充分的发展;要重视现代教育技术在教学中的应用,有条件的地区,要尽可能合理、有效地使用计算机和有关软件,提高教学效益

对数学学习的评价要关注对学生学习过程的评价;恰当评价学生基础知识和基本技能的理解和掌握;重视对学生发现问题和解决问题能力的评价;评价结果以定性描述的方式呈现;更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。

二、教学任务、目标及学生知识情况分析

第一阶段:基础训练段。时间:20xx.8.152011.8.25教学方法:以试卷的形式,巩固学生的基础知识,具体操作如下:

小学毕业考试试卷初一、二各个学期期末考试卷一套并做好简单的试卷分析。以先复习,后考试再补充的形式,巩固学生的基础知识,为其后高强度的学习、训练做好准备。

万丈高楼平地起,只有能从最基本的东西开始,我曾经问过几个学习较差的学生,为什么不喜欢学习?也问过几个一直在努力学习的同学,为什么一直在努力学习,而学习成绩提升不上来?他们的回答基本上,基础知识薄弱,从而跟不上,从来听不懂,或者是听到是听懂了,而在具体做题的时候,感觉不知从何开始分析而无法下笔做题,从而凭感觉做,结果可想而知。

只有一层一层的往上走,一步一个脚印,踏踏实实的从基础开始学习,抓住最基本的知识,抓住知识最本质的东西,才能更深层次发展。试问,一个近视眼,不佩戴眼睛能看清远处的景物吗?知识也是一样,送给学生一个科学、合理的基础知识平台,学生的思维才能向更高更远的层次发展。

第二阶段:20xx-8-282012-1.12新课教学,争取将初三所要教学的新课(上、下两册)完成80%的进度。

本阶段的学习处于高强度学习过程中,稍不注意,就有可能使的学生跟不上,必须有正确,可行的教学方法,必须在教学中考虑教学方法的可行性,不断更改教学方法以,使其符合绝大数学生的味口。

高强度的学习,不能丢失课堂的趣味,不能让学生在枯燥中学习数学,这会严重影响教学质量,同时也失去了教学的意义。学生才是教学质量的根本,要时刻意识到教师是学生的服务者、组织者、引导者。学生才是学习的中心,是教学质量体现的形式及重要体系,要想搞好教学,搞活教学,这与学生的学习兴趣分不开的。如果学生对数学不感兴趣,教师就是付出百分之一万的努力都没有效果,就是神仙也不行,所以说,在教学中,要搞好教学,更要搞活教学,只有在整体上学生进步了,学生在学习上才看到学习数学的希望,进步的希望。看到自己学习成绩一天一天好起来,那么学生才会才数学有兴趣,教师才能拥有有一分耕耘三分收获,而不是一分耕耘一分收获,甚至一分耕耘无收获。

在教学上,必须讲得少,练得多,一块田,如果不耕耙,放再大的水进,也不会满,教学也是一样,教师讲得再多,如果不是练,到头来,学生依然会云里雾里。

在新式的教学教法中讲到,教为辅,探为主,练为提,也就是说,教师的讲授做为学生的引导,以学生探究式学习为课堂的主要教学模式,以练习的方式巩固、提升学生在本课堂的基础知识,对有能力的学生提出更高的要求。这句话讲得很对,在教学上也非常值得借鉴。但也要根据学生的实际情况来分析,还是那句话,走都不能走,能跑

吗?根据我的学生实际情况,认为我现在学生所掌握的知识体系中,还不能完全按照教为辅,探为主,练为提的教学模式进行教学,应该是教与练须相结合,不分主次,既重教,也重学,更重练。把握每个学生的学生进度,根据他们来制定实际的教学方法才是可行的。

在这一个学期中,坚持每课一练,每练必改,每改必分析,在实际教学进程中,掌握好学生对知识的掌握情况,进行针对性的训练,做好服务于学生的准备,让学生与我没有距离,能主动与我在课堂、课后交流。

三、教学措施、方法和日常教学指导思想

1、尽快了解学生,融洽师生关系,消除学生逆反心理,进入正常的学习状态,建立良好的学习氛围,提高学生的学习热情。及时指导、纠错:争取面批、面授,今天的任务不推托到明日,争取一切时间,紧紧抓住初三阶段的每分每秒。课后反馈。落实每一堂课后辅助,查漏补缺。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。

2、认真备课,提高课堂效率,向课堂45分钟要效率。深入挖掘教材、把握重点难点、关键,争取在课堂上消化知识,这也是提高学生学习兴趣的最主要途径。 教学过程中尽量采取多鼓励、多引导、少批秤的教育方法。教学速度以适应大多学生为主,尽量兼顾后进生,注重整体推进。新课教学中涉及到旧知识时,对其作相应的复习回顾。复习阶段多让学生动脑、动手、通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。

3、多研究教学改革、多参加听评课活动,多学习,不断在教学实践中总结教学经验,提高自己的教学能力。积极与其它老师沟通,加强教研教改,提高教学水平。经常听取学生良好的合理化建议。

4、作好常规教学,及时批改作业,及时复习,及时反馈,及时了解学生的学习状态,采取相应的措施。不让每一名学生放弃数学,不让每一名学生放松学习,经常使用鼓励性语言,建立融洽的师生关系。

5、组织学困生的辅导。课堂上多进行提问,多与学生沟通,调动他们的积极性,发挥他们的潜力,增强学习信心。批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。

6、分层辅导,因材施教对本年级的学生实施分层辅导,利用优胜劣汰的方法,激励学生的学习激情,保证升学率及优良率,提高及格率。对部分差生实行义务补课,以提高成绩。按时检验学习成果,做到单元测验的有效、及时,测验卷子的批改不过夜。考后对典型错误利用学生想马上知道答案的心理立即点评。

7、 严格按照教学进度,有序的进行教学工作。用心去做,从细节去做,尽 ……此处隐藏15880个字……题,题型,题量要尽量安排得全面,条理,有序,所选题目要尽量联系生活实际,贴近中考,体现新情景,新材料,便于训练利用已有知识解决新问题的能力。控制所选题目的难度,以中,低档难度题目为主,少选难题,杜绝偏题怪题。

(3)是要把好阅批统计关。凡定时作业,练习,测试,必须有布置,有检查,认真批改,有查必评,有错必纠。杜绝练习,试题不批阅,不统计,凭感觉讲评的现象。

(4)是要把好讲评关。根据批阅统计情况,有的放矢进行讲评,要讲学生所需,切忌面面俱到。要求学生多用启发式,讨论式,引导学生总结出规律和方法。要做到讲一题会一类,举一反

(5)切忌就题论题。

(6)是要把握好学生落实关。学生是否能够复习好,落实是关键。要留给学生自我反思,整改,消化的时间,要求学生从第一次拉练起,建立错题本,查失分,写考情分析,确立新目标,老师要做到跟踪检查,让部分学生二次过关。

教学措施

实行分轮复习

第一轮重点复习巩固基础知识,以课本基本知识为依据,列出每章的知识网络,有利于学生对知识掌握的系统化,以训练基本技能为主的试题辅以练习,强化训练,加深印象。第二轮复习在第一轮分项复习的基础上,进行综合类型题的复习,包括几何应用,代数应用,几何综合,代数综合等方面的综合练习。第三轮主要是做中考模拟试题,让学生熟悉考试类型题,同时提高学生应试的心理素质。最后阶段,根据学生对知识掌握的程度,查漏补缺,因材施教。

教学基本用书

(一)本学期的教学用书参考《初中数学教与学》,《浙江中考》,《三年中考优化试卷》。

(二)自编讲学稿一套。

时间安排

2月26日2月28日第二章《简单事件的概率》

3月1日3月9日第四章《投影与三视图》

3月10日4月中旬复习基础知识

4月中旬5月上旬分项训练

5月上旬5月底综合训练做模拟试题

5月底到最后根据情况查漏补缺。

初三上册数学教学计划12

教学目标:

1.知识与技能:

(1)能证明等腰梯形的性质和判定定理

(2)会利用这些定理计算和证明一些数学问题

2.过程与方法:

通过证明等腰梯形的性质和判定定理,体会数学中转化思想方法的应用。

3.情感态度与价值观:

通过定理的证明,体会证明方法的多样化,从而提高学生解决几何问题的能力。

重点、难点:

重点:等腰梯形的性质和判定

难点:如何应用等腰梯形的性质和判定解决具体问题。

教学过程

(一)知识梳理:

知识点1:等腰梯形的性质1

(1)文字语言:等腰梯形同一底上的两底角相等。

(2)数学语言:

在梯形ABCD中

∵AD∥BC,AB=CD

∴∠B=∠C

∠A=∠D(等腰梯形同一底上的两个底角相等)

(3)本定理的作用:在梯形中常用的添加辅助线——平移腰,可以把梯形化归为一个平行四边形和一个等腰三角形;从而利用平行四边形及等腰三角形的有关性质解决有关问题。

知识点2:等腰梯形的性质2

(1)文字语言:等腰梯形的两条对角线相等

(2)数学语言:

在梯形ABCD中

∵AD∥BC,AB=DC

∴AC=BD(等腰梯形对角线相等)

(3)本定理的作用:利用等腰梯形的性质证明线段相等,以及平移其中一条对角线化梯形为一个平行四边形和一个等腰三角形从而解决有关线段的相等和垂直。

知识点3:等腰梯形的判定

(1)文字语言:在同一底上的两个角相等的梯形是等腰梯形。

(2)数学语言:在梯形ABCD中∵∠B=∠C

∴梯形ABCD是等腰梯形(同底上的两个角相等的梯形是等腰梯形)

(3)本定理的作用:在梯形中常用添加辅助线——补全三角形把原来的梯形化为两个三角形

(4)说明:

①判定一个梯形是等腰梯形通常有两种方法:定义法和定理法。

②判定一个梯形是等腰梯形一般步骤:先判定四边形是梯形,然后再判定“两腰相等”或“同一底上的两个角相等”来判定它是等腰梯形。

【典型例题】

例1. 我们在研究等腰梯形时,常常通过作辅助线将等腰梯形转化为三角形,然后用三角形的知识来解决等腰梯形的问题。

(1)在下面4个等腰梯形中,分别作出常用的4种辅助线(作图工具不限)

(2)在(1)的条件下,若AC⊥BD,DE⊥BC于点E,试确定线段DE与AD,BC之间的数量关系。并证明你的结论。

解:(1)略。

(2)DE=(AD+BC)

过D作DF∥AC交BC延长线于点F

∵AD∥BC,∴四边形ACFD是平行四边形

∴AD=CF, AC=DF

∵AC=BD

∴BD=DF

又∵AC⊥BD,∴BD⊥DF即△BDF为等腰直角三角形

∵DE⊥BF,则DE=BF,

∴DE=(BC+CF)=(BC+AD)

例2. 如图,铁路路基横断面为等腰梯形ABCD,已知路基AB长6m, 斜坡BC与下底CD的夹角为60°,路基高AE为,求下底CD的宽。

解:过点B作BF⊥CD于F

∵四边形ABCD是等腰梯形

∴BC=AD

∵BF=AE,BF⊥CD,AE⊥CD

∵Rt△BCF≌Rt△ADE

在Rt△BCF中,∠C=60°

∴∠CBF=30°

∴CF=BC即BC=2CF

∴BC2=CF2+BF2

即∴CF=2

∵AB∥CD,BF⊥CD,AE⊥CD

∴四边形ABFE是矩形

∴EF=AB=6m

∴CD=DE+EF+CF=AB+2CF=6+2×2=10(m)

例3. 已知如图,梯形ABCD中,AB∥DC,AD=DC=CB,AD、BC的延长线相交于G,CE⊥AG于E,CF⊥AB于F

(1)请写出图中4组相等的线段。(已知的相等线段除外)

(2)选择(1)中你所写的一组相等线段,说说它们相等的理由。

解:(1)DG=CG,DE=BF,CF=CE,AF=AE,AG=BG

(2)证明AG=BG,因为在梯形ABCD中,

AB∥DC,AD=BC,所以梯形ABCD为等腰梯形

∴∠GAB=∠GBA

∴AG=BG

课堂小结:

本节课的学习要注意转化的思想方法,有关等腰梯形的问题往往通过作辅助线将其转化为更特殊的四边形和三角形,常见办法是平移腰,延长腰,作高分割,平移对角线等方法。

《初三上册数学教学计划.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式