长方体和正方体的体积教学反思

时间:2024-02-29 15:48:42
长方体和正方体的体积教学反思

长方体和正方体的体积教学反思

作为一位到岗不久的教师,我们要有一流的课堂教学能力,教学反思能很好的记录下我们的课堂经验,那么问题来了,教学反思应该怎么写?下面是小编帮大家整理的长方体和正方体的体积教学反思,仅供参考,欢迎大家阅读。

长方体和正方体的体积教学反思1

一、联系实际生活,解决实际问题。

长方体和正方体体积的计算,是在理解了体积的概念和体积的单位以后教学的,教师通过切开一个长4厘米、宽3厘米、高2厘米的长方体,看看它含有多少个1立方厘米的体积单位,引入计量体积的方法.但是在很多情况下,是不能用切开的方法来计量物体的体积的.教师采用了让学生用棱长1厘米的正方体拼摆长方体的实验,引导学生找出计算长方体体积的方法。教师考虑到学习数学是为了解决实际生活中的数学问题,要让学生认识数学知识与实际生活的关系,考虑到解决问题的实际情况,(如,不是所有物体都能切开,)怎样才能更好更快的解决问题,(如,找到计算长方体体积的公式,)从而从实践上升到理论,找到解决问题的一般规律。

二、加强实际操作,发展空间观念。

体积对学生来说是一个新概念,由认识平面图形到认识立体图形,是学生空间观念的一次重大的发展。然而此时,学生对立体的空间观念还很模糊,教师特别注意到加强实物或教具的演示和学生的动手操作,以发展学生的空间观念,加深对长方体计算公式的理解。在教学时,教师给了学生12个1立方厘米的小正方体,让学生摆放出不同的长方体,并把长、宽、高的数据填入表格中,启发学生思考,根据记录的长、宽、高,摆这个长方体一排要摆几个小正方体,要摆几排,摆几层,一共是多少个小正方体。再引导学生进一步思考,这个长方体所含小正方体的个数,与它的长、宽、高有什么关系。最后,通过学生自己比较、发现长方体体积的计算公式,并用字母表示。在教学完长方体的计算公式后,教师继续启发学生根据正方体与长方体的关系,联系长方体体积的计算公式,引导学生自己推导出正方体体积的计算公式。 正是教师正确把握了本册教材的重点,发展学生的空间观念,加强实际操作。通过实际观察、制作、拆拼等活动,学生清楚地理解长方体体积计算公式的来源,并能够根据所给的已知条件正确地计算有关图形的体积。学生的动手能力也得到了提高。

三、小组合作交流、培养自主学习能力。

传统的教学观念阻碍了学生主动性的发挥和创造力的培养,要改变传统观念就要实现三个转变:教学目标,由以知识传授为主改为增长经验、发展能力;教学方法,由以教师为中心改为以学生为中心;课堂气氛,由以严格遵守常规改为生动活泼、主动探索。在新的教育观念的指导下,教师在本节课中大胆地实践,采用小组合作交流,给学生最大限度参与学习的机会,通过教师的引导,学生自主参与数学实践活动,经历了数学知识的发生、形成过程,掌握了数学建模方法。学生在活动中表现出主动参与、积极活动的热情让每个听课老师都能感受到,本节课的教学目标也就达到了,因为它不仅仅让学生学会了一种知识,还让学生培养了主动参与的意识,增进了师生、同伴之间的情感交流,提高了实际操作能力,并从活动中形成了数学意识,学会了创造。

长方体和正方体的体积教学反思2

本节课的目的是让学生通过实践活动,探索并掌握长方体、正方体体积的计算方法;在观察、操作、探索的过程中,提高动手操作能力,进一步发展学生的空间观念,因此课一开始,我并没有设置“漂亮”教学情境,而是在处理上一道练习题时引入:12个小正方体摆出不同情况的长方体。每摆出一种,学生记录其长、宽、高、体积,观察得出长方体的体积计算公式。这样做的目的有二个:一是抛弃繁索的动作,直奔中心; 二是快速刺激学生的探索欲望,并赢得了充分的

操作探索时间。

在这一个操作探索活动中,学生通过数据的记录和分析,,发现长方体与长、宽、高之间的关系,知道了求长方体体积所必须具备的条件,并根据数据抽象且纳出体积公式。这当中不仅提高了学生的动手操作能力,也发展了学生的分析概括能力。

最后,我鼓励学生大胆猜想,正方体的体积计算公式会是什么样子呢?根据长方体和正方体的关系来推断,接着用推导长方体体积的办法对自己的猜想进行驻记,使学生感到新知识不新、不难,实现平稳过渡树立学习新知识、解决新问题的信心。

长方体和正方体的体积教学反思

本节课教学时我主要运用操作实验法、引探发现法、小组合作学习法等多种方法,给学生提供自主探索的平台,让学生通过小组合作学习,操作实验、观察、猜想、发现推导出长方体和正方体体积计算统一公式,让学生亲身经历知识的形成全过程,从而证明了自己的能力,品尝到成功的喜悦。培养学生的合作意识和实践能力。

一、利用实际生活中的实物,引导学生解决实际问题。

二、运用找到的规律,进行实际操作。

体积对学生来说是一个新概念,他们是由认识平面图形上升到认识立体图形,是空间观念的一次质的飞跃。然而此时,学生对立体的空间观念还比较模糊,我特别注意到加强实物或教具的演示和学生的动手操作,以发展学生的空间观念,加深对长方体和正方体计算公式的理解。在教学时,我结合实际的教具,引导学生进一步对长方体和正方体体积公式的强化记忆,如粉笔盒的体积是多少?怎样求它的体积?要求它的体积必须有哪些条件?(可以请几个学生到讲台上实际量出粉笔盒的长宽高,并把这些条件板书在黑板上,让全体学生进行计算粉笔盒的体积),当学生准确算出粉笔盒的体积后,教师话峰一转,你们知道自己的数学课本的体积有多少吗?你能求出数学课本的体积吗?要求出数学课本的体积是多少?必须有哪些条件?你能找出

这些条件吗?下面请同学们求出自己数学课本的体积是多少?看谁做得又对又快。通过实际观察、操作等活动,学生清楚地理解长方体和正方体的体积计算公式,并能够根据所给的已知条件正确地计算有关图形的体积,动手能力也得到了相应的提高。

《长方体和正方体的体积计算》教学反思

本节课教学的是长方体和正方体的体积计算公式。

课始,我出示了一个用萝卜做成的长方体(长3厘米、宽2厘米、高2厘米),引导学生讨论:怎样知道这个长方体的体积?学生受上节课的影响,很快想到了切分成一个个1立方厘米的小正方体,再数数。就得出了这个长方体的体积。

(一)首先创设无法在视觉上比较体积大小的问题情境,让学生想办法解决,学生求知欲很高,想到了很多方法。采用一生的方法计算,在通过动手操作,摆摆、算算,让学生自己探索,验证方法的正确性与可行性,把求长方体的体积很自然地引入了求小正方体的个数,把复杂问题简单化,最后借助小组合作交流,经过归纳、推理,揭示出长方体体积计算公式。公式的推导过程,是学生个人独立思考的过程,是小组合作学习的过程。学生对公式的来源、理解特别深刻,真正赋予知识的个人意义。

……此处隐藏5778个字……叙述,你想到什么?

(2)这段文字中描述的长方体有什么特征?底面积指的是哪一个面的面积?

(3)古代数学家是怎样计算长方体体积的?它与我们今天掌握的计算方法相同吗?为什么?

(4)怎样将这个长方体变成一个最大的正方体?它的体积怎样计算?

这四个问题为孩子们思考、交流并推出长方体、正方体的体积计算统一公式起了一个导航的作用。它加深了学生对长方体、正方体特征及之间的关系的认识,渗透了几何变换的思想方法,也让孩子们感受我国数学的源远流长。

在第三个问题的交流中,我主要引导学生将自己掌握得长方体和正方体体积计算公式和古代数学家总结出来的底面积乘高进行对比,在交流对比中明白长乘宽或者棱长乘棱长其实就是底面积,之后,在调整中概括出长方体和正方体统一的体积计算公式。这次对比,使孩子们对原有的计算公式进行了重组,使他们对柱体体积计算方法也有了一个基本的认识,也为日后学习各种柱体体积奠定了基础。

长方体和正方体的体积教学反思11

在教学前我准备了24个小正方体。上课时我告诉学生这些小正方体的体积是一立方厘米,那么它的棱长是多少呢?学生答一厘米。接着我运用这些小正方体分别摆成不同长宽高的长方体,每摆出一个长方体,就让学生观察这个长方体的长、宽、高各是多少?再数出这些长方体各含有多少个1立方厘米的体积单位。它的体积是多少?并根据课本上的表格及时做好记录。接着引导学生观察每个长方体的长宽高三个条件的积与数出来的小正方体的个数有什么关系,然后让学生进行小组讨论,找出长方体的体积的的计算方法。小组讨论结束后,请代表发言,学生因为在小组内已经进行了讨论、验证,直接就出了正确答案。然后师生共同把长方体的体积公式归纳出来:长方体的体积=长×宽×高,用字母表示:V=abh。接着,让学生自己想一想正方体的体积应该怎样计算?通过学生的回答,我趁机提醒学生正方体是特殊的长方体,运用如此类推的方法引导学生归纳出正方体的体积公式。

体积对学生来说是一个新概念,他们是由认识平面图形上升到认识立体图形,是空间观念的一次质的飞跃。当学生推导出长方体和正方体的体积计算公式时,我直接出示了两个立体图形,让学生运用公式求出他们的体积。通过实际观察、操作等活动,学生清楚地理解长方体和正方体的体积计算公式,并能够根据所给的已知条件正确地计算有关图形的体积,引导学生进一步对长方体和正方体体积公式强化记忆。

教学时,我鼓励学生大胆猜想,正方体的体积计算公式会是什么样子呢?根据长方体和正方体的关系来推断,接着用推导长方体体积的办法对自己的猜想进行验证,使学生感到新知识不新、不难。实现平稳过渡,使学生树立学习新知识、解决新问题的信心。

本节课存在的问题:

1.如果让学生自己准备学具,自己动手摆一摆,并观察正方体的数量与体积的关系,让学生更直观的明白长乘宽来自一排摆了几个,摆了几排。

2.注意数学语言的准确性。

长方体和正方体的体积教学反思12

本节课教学的是长方体和正方体的体积计算公式。课始,我出示了一个长方体模型,引导学生讨论:怎样知道这个长方体的体积?学生受上节课的影响,很快想到了切分成一个个1立方厘米的小正方体,再数数。就可以得出了这个长方体的体积。

首先出示书本例题,一个长方体和一个正方体,让学生无法在视觉上比较体积大小的问题情境。让学生想办法解决,学生求知欲很高,想到了很多方法。在通过动手操作,摆摆、算算,让学生自己探索,验证方法的正确性与可行性,把求长方体的体积很自然地引入了求小正方体的个数,把复杂问题简单化,最后借助小组合作交流,经过归纳、推理,揭示出长方体体积计算公式。

其次,我又请学生先说出你是怎么数的?先数第一层的个数,再乘层数(相当于高),第一层也就是看看有几行(相当于宽),每行有几个(相当于长),这是全班学生用的最多的方法。紧接着让学生摆,记录.再讨论交流发现出了体积公式。虽然这里花费了很多的时间,以至于后面学生巩固公式解决问题的时间很少,但我个人认为还是值得的。学生在操作、交流的过程中不仅收获了“公式”,更多的是思维得到了训练,学习能力得到了培养。

最后,掌握了公式,就要能够实践运用。让学生感到数学源于生活,又用于生活,更让他们感到成功的喜悦。掌握了长方体体积公式后,出示魔方,让学生尝试解决它的体积,通过动手量、算,自然地迁移和转化到正方体体积计算公式。

本节课教学效果较好,充分体现了教师为主导、学生为主体的教学观念。教师为学生的自主探索提供了广阔的时间和空间。学生学得自主,学得快乐,并学有所获。不但能做到较好的掌握课本知识,还能做到灵活的运用迁移和转化的数学思想学习新知,既训练了思维又培养了能力。

长方体和正方体的体积教学反思13

一、利用实际生活中的实物,引导学生解决实际问题。

长方体和正方体体积的实际应用,学生是在掌握了体积的概念和单位等内容的基础上进行学习的。教师在教学过程中,可以运用日常生活中常见几何体来进行教学,如粉笔盒、课本和长方体的橡皮擦等实物,教学前教师可以先准备一立方厘米的正方体若干个,运用这些小正方体按小组分给学生,然后让学生分小组进行摆成不同长宽高的长方体,再数出这些长方体各含有多少个1立方厘米的体积单位,接着引导学生找出自己摆成的长方体的长宽高各是多少,再观察这个长方体的长宽高三个条件的积与数出来的小正方体的个数有什么关系,然后让学生进行小组讨论,找出长方体的体积的的计算方法。这时教师可以在每个小组中提问学生,你们找出的长方体的计算方法是怎样的?你们是怎样找出来的?在这提问中学生答对的教师要给予肯定,答错的也要给予鼓励,然后师生共同把长方体的体积公式归纳出来:长方体的体积=长×宽×高,用字母表示:V=abh。这样教学,教师就把学生带到了从实践知识上升到理论知识,并找到解决问题的一般规律。另外,教师也可以用如此类推的方法引导学生归纳出正方体的体积公式。

二、运用找到的规律,进行实际操作。

体积对学生来说是一个新概念,他们是由认识平面图形上升到认识立体图形,是空间观念的一次质的飞跃。然而此时,学生对立体的空间观念还比较模糊,教师应特别注意到加强实物或教具的演示和学生的动手操作,以发展学生的空间观念,加深对长方体和正方体计算公式的理解。在教学时,教师结合实际的教具,引导学生进一步对长方体和正方体体积公式的强化记忆,如粉笔盒的体积是多少?怎样求它的体积?要求它的体积必须有哪些条件?(教师可以请几个学生到讲台上实际量出粉笔盒的长宽高,并把这些条件板书在黑板上,让全体学生进行计算粉笔盒的体积),当学生准确算出粉笔盒的体积后,教师话峰一转,你们知道自己的数学课本的体积有多少吗?你能求出数学课本的体积吗?要求出数学课本的体积是多少?必须有哪些条件?你能找出这些条件吗?下面请同学们求出自己数学课本的体积是多少?看谁做得又对又快。通过实际观察、操作等活动,学生清楚地理解长方体和正方体的体积计算公式,并能够根据所给的已知条件正确地计算有关图形的体积,动手能力也得到了相应的提高。

《长方体和正方体的体积教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式